Nurettin Eraslan
3 min readJun 29, 2023

Building an Artificial Intelligence Chat Application with Flutter

Flutter is a software development kit developed by Google that is used to build cross-platform mobile applications. With its rich features, Flutter makes it easy to create an interactive messaging application with artificial intelligence.

This application provides a platform where users can interact naturally with an AI chatbot. By utilizing the GPT-3.5, a powerful language model developed by OpenAI, the application understands user inputs and generates meaningful responses. GPT-3.5 has been trained on a vast dataset of text and possesses the ability to learn from it.

The application allows users to send text-based messages and engage in conversations with the AI chatbot. Users can ask questions on various topics, seek recommendations, or simply engage in casual conversation. The AI model analyzes user inputs and generates logical and coherent responses.

The underlying AI model is highly advanced and continuously updated. This enables it to provide better responses to user inputs and improve over time. The model is built upon an extensive knowledge base and is knowledgeable about various subjects.

The application is suitable for both entertainment and practical purposes. Users can spend time conversing with the AI chatbot, acquire information, or create a friendly chat environment.

Thanks to Flutter's cross-platform capabilities, the application can be seamlessly deployed on different platforms such as iOS and Android. With Flutter's fast and impressive performance, users can enjoy a smooth and responsive user experience.

In conclusion, building a basic messaging application with artificial intelligence using Flutter is straightforward. By integrating the GPT-3.5 model, users can experience realistic and interactive conversations. Flutter's robust features and cross-platform support make it even easier to develop such applications.

import 'package:flutter/material.dart';

void main() {
runApp(ChatApp());
}

class ChatApp extends StatelessWidget {
@override
Widget build(BuildContext context) {
return MaterialApp(
title: 'Chat App',
theme: ThemeData(
primarySwatch: Colors.blue,
),
home: ChatScreen(),
);
}
}

class ChatScreen extends StatefulWidget {
@override
_ChatScreenState createState() => _ChatScreenState();
}

class _ChatScreenState extends State<ChatScreen> {
TextEditingController _messageController = TextEditingController();
List<String> _messages = [];

void _sendMessage(String message) {
setState(() {
_messages.add(message);
// Yapay zeka modeline gönderilen mesajın yanıtını burada alabilirsiniz.
_messages.add(getAIResponse(message));
});
_messageController.clear();
}

String getAIResponse(String message) {
// Yapay zeka modeline gönderilen mesajın yanıtını döndüren işlevi burada gerçekleştirebilirsiniz.
// Örneğin, GPT-3.5 gibi bir yapay zeka modeliyle API çağrısı yapabilirsiniz.
// Bu örnekte, yapay zeka yanıtlarını basitçe bir diziye sabit olarak ekleyelim.
List<String> aiResponses = [
'Merhaba! Nasıl yardımcı olabilirim?',
'Evet, kesinlikle!',
'Üzgünüm, bunu yapamam.',
'Çok ilginç!',
'Elbette, hemen yapabilirim.',
];
// Rastgele bir yapay zeka yanıtı döndürelim.
return aiResponses[DateTime.now().millisecondsSinceEpoch % aiResponses.length];
}

@override
Widget build(BuildContext context) {
return Scaffold(
appBar: AppBar(
title: Text('Chat App'),
),
body: Column(
children: [
Expanded(
child: ListView.builder(
itemCount: _messages.length,
itemBuilder: (context, index) {
return ListTile(
title: Text(_messages[index]),
);
},
),
),
Padding(
padding: const EdgeInsets.all(8.0),
child: Row(
children: [
Expanded(
child: TextField(
controller: _messageController,
decoration: InputDecoration(
hintText: 'Mesajınızı girin...',
),
),

Nurettin Eraslan
Nurettin Eraslan

No responses yet